

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT / CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

MODEL ANSWER

WINTER-18 EXAMINATION

Subject Title: Electronics Measurements & Instrumentation

Subject Code:

22333

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q.N.	Answer	Marking Scheme
Q.1		Attempt any FIVE of the following :	10-Total Marks
	a)	Define: (i) Absolute Instrument (ii) Secondary Instrument	2M
	Ans:	 i)Absolute Instrument: An instrument whose calibration can be determined by means of physical measurements on the instrument. ii)Secondary Instrument: Secondary instruments are those, in which the value of electrical quantity to be measured can be determined from the deflection of the instruments, only when they have been pre-calibrated by comparison with an absolute instrument. 	Each definition -1M
	b)	State the meaning of PT-100.	
	Ans:	PT –Stands for platinum, 100 –stands for 100Ωat 0^0 centigrade.PT -100 is a RTD made up of platinum having 100Ω resistance at 0^0 centigrade.	1M 1M
	c)	List applications of ohmmeter.	2M
	Ans:	 The ohmmeter is a meter for measuring electrical resistance in ohm. It is used as Megger to measure high resistance. 	01M for each

	3. It is used to test the power circuits.		
d)	State different types of errors in Instrume	State different types of errors in Instruments.	
Ans:	There are three types of error 1) Gross Error : These errors are mainly human mistakes in reading instruments and recording and calculating measurement results. 2) Systematic Error : These types of error are divided into three categories i) Instrumental Errors :Instrumental error is due to inherent shortcomings in the instrument, ii)Environmental Error:Environmental errors are due to conditions external to the measuring device including conditions in the area surrounding the instrument. iii) Observational Error: It is due to wrong method followed by operator to read analog meter used by operator 3) Random Error .:These errors are due to unknown causes which are not determinable.		
e)	State need of delay line in CRO.		2M
Ans:	The delay line is used in CRO to delay the signal for some time in the vertical sections. As horizontal channel consists of trigger circuit and time based generator. This causes more time to reach signal tohorizontal plates than vertical plates. For synchronization of reaching input signal at same time to both the plates in CRT		2 M
f)	Differentiate AC and DC signal conditioning.		
Ans:	AC signal conditioningExcitation source is only AC for ACsignal conditioning.AC signal conditioning is calibrated atcomparatively high frequency.Demodulation is present in AC.	DC signal conditioningExcitation source can be ac or dc for DCsignal conditioning.DC signal conditioning easy to calibrateat low frequency.Demodulation is absent in DC.	Any 2 points – 1 mark each (Any relevant point marks can be given)
g)	State selection criteria of transducer.		2M
Ans:	The following points should be considered while selecting a transducer for particular application.1. Operating range2. Operating principle3. Sensitivity4. Accuracy5. Frequency response and resonant frequency6. Errors		

		7. Environmental compatibility	
		8. Usage and ruggedness.	
		9. Electrical aspect.	
		10. Stability and Reliability	
		11. Loading effect	
		12. Static characteristics	
		13. General selection criteria	
Q 2		Attempt any THREE of the following :	12-Total Marks
	a)	Explain working principle of PMMC instrument with diagram.	4M
		Diagram:	
	Ans:	Permanent Radial field Pivot and jevel Balancing Weight Coli and Former Former Former Former Former Former Former Formanent Forma	2M
		Balancing	
		Permanent Magnet Moving Coil Instrument	
		Working: 2M	214
		• When current passes through the coil a deflecting torque is produced. This deflecting torque is produced due to interaction between the field.	21 VI
		by permanent magnet and magnetic field produced by moving coil	
		by permanent magnet and magnetic neid produced by moving con.	

	 Due to this torque the coil deflects and this deflection is proportional to the current flowing through the coil. The pointer attached to the coil indicated the magnitude of quantity being measured. The another torque is developed by the hair spring known as controlling torque. This torque helps to stabilize the pointer. The pointer becomes stable at equilibrium; this is possible only when the controlling torque becomes equal to the deflecting torque. 	
b)	State and explain different types of standards.	4 M
Ans:	 International Standards: These are defined on the basis of international agreement. They represent the units of measurements which are closest to the possible accuracy attainable with present day technological and scientific methods. International standards are checked and evaluated regularly against absolute measurements in terms of the fundamental units. These standards are maintained at the International Bureau of Weights and Measures and are not available to the ordinary user of measuring instruments for the purposes of calibration or comparison. Primary Standards: They are highly accurate and can be used as ultimate reference standards. They are not available outside the national laboratories. They are not available outside the national laboratories. The main function of the primary standards is the verification and the calibration of secondary standards. Secondary standards: Secondary standards are the basic reference standards used in the laboratories. These are the highest level of standards that a manufacturer has. Each industry has its own standards. The secondary standards is responsible for the calibration of these standards. 	1M each standard
	4.Working standards	
	 These standards are used to check and calibrate general laboratory instrument for their accuracy and performance. The working standards of mass and length are available in a wide range of values so that, they suit any kind of application. 	

	c)	Describe the working principle of Piezo-Electric	Fransducer.	4M
	Ans:	Diagram:	toelectric crystal	2M
		Principle of operation: When a pressure or force or material like quartz crystal or crystalline substances material or vice versa.	vibration applied to the crystalline then an e.m.f. is generated across the	2M
d) Compare Bourdon tube with Bellows.		Compare Bourdon tube with Bellows.		4M
	Ans:	Bourdon tube Bella Bourdon tube Force Bourdon tube Force Bourdon tube Force Bourdon tube End Bella End Bella End Bella End Bella End Bella End	Diaphragm Diaphragm Applied pressure ows gauges excel in low pressure fications ows are comparatively more sensitive w pressure than Bourdon tube ows are useful to measure differential sure.	Consider other relevant point if any Each point – -1M
Q.3		Attempt any THREE of the following :		12-Total Marks
	a)	Define calibration and state its need.		4 M
	Ans:	Calibration: Calibration is a process of estimating	the value of a quantity by comparing	2M

that quantity with standard quantity. The standard with which comparison is made is definition called as standard instrument. **Need:** The unknown quantity is to be calibrated. This quantity is called as test quantity. If 2M -Need an instrument is to be calibrated it is called as test instrument. For calibration the test instrument will be compared with the standard instrument. Calibration of your measuring instruments has two objectives. It checks the accuracy of the instrument and it determines the traceability of the measurement. In practice, calibration also includes repair of the device if it is out of calibration. A report is provided by the calibration expert, which shows the error in measurements with the measuring device before and after the calibration. b) Draw labelled diagram of CRT. **4M** Vertical Aquadag deflection coating Electron gun plates Focusing Pre accelerating Electron anode + 400 V anode beam Pins Heater 4M for Visible light neat Ans: >Emission labeled Bright spot Diagram Phosphor screen Leads Grid Accelerating Cathode anode 2 kV to Horizontal deflection Identify Active and Passive transducers from: RTD, Piezoelectric transducer, Strain c) **4M** gauge, LVDT. Active transducer: Piezoelectric transducer 1 for Each Ans: Passive transducer: RTD, LVDT, Strain gauge d) Voltmeter never connected in series with source of emf. Justify it. **4M** 1. The connecting of voltmeter in series is equivalent to connecting a very high resistance in series with the circuit. 2. By this only small insignificant amount of current flow through the circuit and nearly results in an open circuit. 4M for 3. So resultant power should be minimum or may be in other words saying zero power relevant Ans: from the circuit. justificatio 4. Voltmeter when connected in parallel between a point and ground potential it takes in n very less power because of the low current passing through it. If you connect it in series that would make your circuit transformed totally, which causes high potential difference across the voltmeter and you cannot measure the actual potential difference.

	A data presentation Performs the transference of the records	on element: slation function, such as the simple ing of a pen Moving over chart.	e indication of a pointer moving a	
b)	Compare Analog i) Principle ii) Accuracy iii) Resolution iv) Example	and Digital meters on:		4M
	Parameter	Analog meter	Digital meter	
	Principle	The meter that displays analog signals is called as an analog meter	The meter that displays Digital signals is called as an Digital meter	
Δns·	Accuracy	Low	High	1M for
1113.	Resolution	Low	High	Parameter
	Example	PMMC instrument, analog ammeter, analog	DMM, DVM, Logic Analyzer, Spectrum Analyzer.	
c)	Explain block dia	gram of AC signal conditioning.		4M
Ans:	Diagram: Measurand or input transducer	Bridge Calibration and zeroing network Power oscillator Supply Refere	Phase sensitivity demodulator filter	2M
	 Explanation: 1. The transducers used are the variable resistance or variable inductance transducers. They are employed in the range of frequencies from 50 Hz to 200 KHz where the carrier frequency is much higher, and that are 5 to 1 times the signal frequency. 2. Transducer parameter variations amplitude modulate the carrier frequencies at the bridge output, the waveform is amplified and demodulated. 			

	direction of the parameter change in the bridge output.	
	4. It is difficult to achieve a stable carrier oscillator than the comparable d.c. stabilized source.	
	5. In carrier system it is easy to obtain high CMRR of mains frequency pick-up.	
	6. Active filters can be used to reject this frequency and prevent overloading of a.c. amplifier.	
	7. The Phase sensitive demodulators filter out the carrier frequency component of the data signal.	
d)	State and explain Seeback and Peltier effects.	4M
	Seeback effect states that whenever two dissimilar metals are connected together to form two junctions, out of which, one junction is subjected to high temperature and another junction is subjected to low temperature then e.m.f is induced proportional to the temperature difference between two junctions. Shown in figure. $ \frac{T_1}{J_1} + \frac{T_2}{J_2} $	
Ans:	Peltier effect : Peltier effect state that two dissimilar metals closed loop, if currentis forced to flow through the closed loop then one junction will be heated and other will become cool. Shown in figure. $\underbrace{\int_{J_1} \frac{m_2}{(Cold Junction)} \int_{Voltage}^{m_2} J_2}_{Voltage}$	2M for Each effect

	(ii) Procedure to measure humidity using hygrometer	Diagram 1½ marks
	 Explanation: It consists of bunch of human hair which increases mechanical strength of the instrument, arm with pivot joints and points scale assembly. The element is maintained at slight tension by a spring. The hair strands are generally arranged parallel to each other with sufficient space between them forgiving free access to the air sample whose humidity is to be measured. The indicator scale is directly calibrated to give a direct indication of humidity. The pointer or recording pen is operated through mechanical linkage. As the relative humidity surrounding to that of hygrometer increases, length of hair strands increases, which move the pointer on the calibrated scale for maximum value 	Explanati on= 1 ^{1/} 2 marks
c)	Design a 'D' Arsonval moment with internal resistance of 60Ω and full scale deflection current 3 mA into a multiranging dc voltage with voltage range of $0 - 20$ V, $0 - 40$ V, $0 - 100$ V.	6M
Ans:	Rm= 60Ω Ifsd= Im= $3mA$ To find: a) Rs1 b) Rs2 Solution: For range (0-20V), V1=20V Therefore, Rs1= (V1/ Ifsd) – Rm = (20/ $3x10^{-3}$) – 60 = $6666.66-60$ = 6666.66 Rs1= 6.6 K Ω For range (0-40V), V2=40V Therefore, Rs2= (V2/ Ifsd) – Rm = $-(40/3x10^{-3}) = 60$	02 M

		= 13333.3 - 60 = 13273.3Ω Rs2=13.273KΩ For range (0-100V), V3=100V Therefore, Rs3 = (V3/ Ifsd) – Rm = (100/ 3x10 ⁻³⁾ - 60 = 33333.3 - 60 = 33273.3Ω Rs3=33.273KΩ $\bigvee_{V2} Rs2$ $\bigvee_{V2} Rs2$ $\bigvee_{V2} Rs3$ $\bigvee_{V2} Rs3$ $\bigvee_{V2} Rs3$ $\bigotimes_{V3} Rs3$ $\bigotimes_{V3} Rs3$	02 M 02 M
Q.6		Attempt any TWO of the following:	12-Total Marks
	a)	i) Explain the working of LVDT with neat diagram.ii) Compare LVDT with RVDT.	6M
	Ans:	i) Working of LVDT with neat diagram. $\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	LVDT diagram =1 mark

Sr. No	Parameters	LVDT	RVDT	
1	Stands for	Linear Variable Differential Transformer	Rotatory Variable Differential Transformer	
2	Definition	Converts the linear motions into electrical signals.	Used for measuring the angular displacement	
3	Core shaped	Rectangle	Cam	
4	Sensitivity	2.4mv per volt per degree of rotation	2 to 3 mv per volt per degree of rotation	
5	Measuring Range	±100µm to ±25cm	Upto ±40°	A
6	Input Voltage	1V to 24V RMS	upto 3V RMS	poi
7	construction	Secondary 1	Primary winding Shaft f_{S1}	ma

	The analog voltage input signal is digitized in a 10 bit A/D converter with a resolution of0.1% (1 part in 1024) and frequency response of 25 kHz. The total digital memory storagecapacity is 4096 for a single channel, 2048 for two channels each and 1024 for fourchannels each. The analog input voltage is sampled at adjustable rates (Upto 100, 000 samples per second) and data points are read onto the memory. A maximum of 4096 points are storable in thisparticular instrument. (Sampling rate and memory size are selected to suit the duration andwaveform of the physical event being recorded.) Once the sample record of the vent is captured in memory, many usefulmanipulations arepossible, since memory can be read out without being erased. If the memory is read out rapidly and repetitively, an input event which was a single shottransient becomes a repetitive or continuous waveform that can be observed easily on anordinary scope(without going through DAC) to say a computer where a stored program canmanipulate the data in almost anyway desired. Pre triggering recording allows the input signal preceding the trigger points to be recorded. In ordinary triggering the recording process is started by the rise of the input (or someexternal triggering) above some preset threshold value. As in digital recorder, DSO can be set to record continuously(new data coming into thememory pushes out the old data, once memory is full), until the trigger signal is received then the recording is stopped, thus freezing data received prior to the trigger signal in thememory. An adjustable trigger delay allows operator control of the stop point, so that the trigger mayoccur near the beginning, middle or end of the stored information.	Explanati on 3 marks
c)	i) State need of signal conditioning.ii) Explain with sketch function of each block of Data Acquisition System (DAS).	2M 4M
Ans:	 i) Need of signal conditioning The Measured, which is basically a physical quantity as is detected by the first stage of instrumentation or measurement system. The first stage, "detector transducer Stage", the quantity is detected and is transduced into an electrical form. The output of the first stage has to be modified before it became usable and satisfactory to drive the signal presentation stage of the measurement stage may consist of indicating, recording, displaying, data processing element or control systems. Measurement of dynamic physical quantities requires faithful representation of their analog or digital output obtained from the intermediate stage i.e. signal conditioning stage and this places severe strain on the signal conditioning equipment. The signal conditioning equipment may be require doing linear processes like amplification, attenuation, integration, differentiation, addition and subtraction. They are also required to do nonlinear processes like modulation, sampling, filtering, clipping, clamping etc. These functions are require to faithful reproduction of output signal for the final data presentation stage. 	2 M

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT / CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

SUMMER-19 EXAMINATION

Model <u>Answer</u>

Subject Name: Electronic measurements and instrumentation Subject code:

22333

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answers	Marking
No.	Q. N.		Scheme
1	(A)	Attempt any FIVE of the following:	10- Total Marks
	(a)	Write any two applications of Instrumentation System.	2M
	Ans:	Instrumentation is used to measure many parameters (physical values). These parameters include:	(Any 2 correct pt. 2M)
		Pressure, either differential or static	
		• Flow	
		Temperature	
		Levels of liquids, etc.	
		• Density	
		Viscosity	
		Ionising radiation	
		Frequency	

BOARD OF TECHNICAL EDUCATION

rtified)

MAHARASHT (Autonomous) (ISO/IEC - 2700

SUMMER-19 EXAMINATION

Model <u>Answer</u>

22333

	Current	
	Voltage	
	Inductance	
	Capacitance	
	Resistivity	
	Chemical composition	
	Chemical properties	
	Position	
	Vibration	
(b)	Define :	2M
	(i) Resolution (ii) Accuracy	
Ans:	(i) Resolution: The smallest change in input to which instrument can respond is known as resolution.	(1M for each
	(ii) Accuracy: It is the degree of closeness with which an instrument reading approaches the true value of the quantity being measured.	definiti n)
	(any other relevant definition should also be considered)	
(c)	Sketch Block diagram of vertical deflection system used in CRO.	2M
Ans:	PROBE INPUT TIP CONNECTOR SELECTOR GND GND	(2M for correct diagrar)
	BLOCK DIAGRAM OF VERTICAL DEFLECTION SYSTEM	

rtified)

MAHARASHT

(Autonomous) (ISO/IEC - 2700

SUMMER-19 EXAMINATION

Model <u>Answer</u>

22333

(d)	Define : (i) (ii)	Sensor Transducer	2M
Ans:	(i)	Sensor : A device which detects or measures a physical property and records, indicates, or otherwise responds to it.	(1M for each
	(ii)	Transducer : a device that converts variations in a physical quantity, such as	definition n)
		pressure or brightness, into an electrical signal, or vice versa.	
	(any othe	r relevant definition should also be considered)	
(e)	List any fo	our types of transducer.	2M
Ans:	Types of	Transducer based on Quantity to be Measured	
	• Te	emperature transducers	(1M for each
	• Pr	ressure transducers	correct type)
	• Di	splacement transducers	
	• Flo	ow transducers	
	⊤ypes of ⁻	Transducer based on the Principle of Operation	
	• Ph	notovoltaic	
	• Pi	ezoelectric	
	• Cł	nemical	
	• M	utual Induction	
	• El	ectromagnetic	
	• Ha	all effect	
	• Pł	notoconductors	
	Types of [•]	Transducer based on Whether an External Power Source is required or not	

BOARD OF TECHNICAL EDUCATION

(ISO/IEC - 2700 rtified)

MAHARASHT

(Autonomous)

SUMMER-19 EXAMINATION

Model Answer

22333

	Active Transducer	
	Passive Transducer	
(f)	State need of level measurement.	2M
Ans:	In almost all industries, vast quantities of liquid such as water solvents, chemicals etc. are used in number of processes. It is widely employed to monitor as well as measure quantitatively the liquid content in the tanks, containers and vessels etc liquid level affects both pressure and rate of flow in and out of the container and therefore its measurement becomes important in a variety of processes encountered in modern manufacturing plants.	(2M for need)
(g)	Write objective of Data acquisition system.	2M
Ans:	Objectives of Data Acquisition System:	
	It must monitor the complete plant operation to maintain online optimum and safe	(Any 2
	operations.	correct pt. 2M)
	 operations. It must provide an effective human communication system and be able to identify problem areas, thereby minimizing unit availability and maximizing unit through point at minimum cost. 	correct pt. 2M)
	 operations. It must provide an effective human communication system and be able to identify problem areas, thereby minimizing unit availability and maximizing unit through point at minimum cost. It must be able to collect, summarize and store data for diagnosis of operation and record purpose 	correct pt. 2M

Q.	Sub	Answers	Marking
No.	Q. N.		Scheme
2		Attempt any THREE of the following:	12- Total Marks

SUMMER-19 EXAMINATION

Model <u>Answer</u>

22333

(a)	Define any two dynamic characteristics of measurements.	4M
Ans:	1. Speed of response:	
	The rapidity with which instrument responds to make changes in the measured quantity is	
	called as speed of response.	(Any 2
	2. Fidelity:	correct
	The degree to which instrument indicates the change in measured variable without dynamic	each)
	error is called as fidelity.	
	3. Lag:	
	The retardation on delay in the response of an instrument to make the change in measure	
	quantity is known as lag.	
	4. Dynamic error:	
	The difference between the true value of a quantity changing with time and the value	
	indicated by the instrument if no static error is assumed is called as dynamic error.	
(b)	Draw PMMC meter movement and describe it.	4M
Ans:	Core Coil Core Non-Magnetic Support	2M for labeled diagram

SUMMER-19 EXAMINATION

Model <u>Answer</u>

Subject Name: Electronic measurements and instrumentation Subject code:

	OR	
	(Any other relevant diagram shall be considered)	
	Working principle of PMMC:	2M for explan ion
	1. The working principle of PMMC is based on basic meter movement known as D'Arsonval	
	principle stated as when current passes through the coil a deflecting torque is produced due	
	to interaction between magnetic field produced by permanent magnet and magnetic field	
	produced by moving coil.	
	2. Due to this torque coil deflects and this deflection is proportional to the current flowing	
	through the coil.	
	3. The pointer attached with coil indicates the magnitude of quantity being measured.	
	4. Another torque is developed by spring known as controlling torque. This torque helps to	
	stabilize the pointer	
	5. When controlling torque becomes equal to deflecting torque then pointer attached with	
	scale become stable at equilibrium.	
(c)	Describe the block diagram of function generator.	4M

SUMMER-19 EXAMINATION Model <u>Answer</u> Subject Name: Electronic measurements and instrumentation Subject code:

SUMMER-19 EXAMINATION Model <u>Answer</u>

Subject Name: Electronic measurements and instrumentation Subject code:

MAHARASHT (Autonomous) (ISO/IEC - 2700

SUMMER-19 EXAMINATION Model Answer

22333

The cross section view of C type bourdon tube under normal condition and	
pressurized condition is as shown in figure.	
• The pressure which is to be measured is applied to the bourdon tube through open	
end. When this pressure enters the tube, the tube tends to straighten out	
proportional to applied pressure.	
• This causes the movement of the free end and the displacement of this end is given	
to the pointer through mechanical linkage i.e. geared sector and pinion.	
• The pointer moves on the calibrated scale in terms of pressure. The relationship	
between the displacement of the free end and the applied pressure is nonlinear.	

Q. No.	Sub Q. N.		Ans	wers		Marking Scheme
3		Attempt any THREE o	f the following :			12- Total Marks
	(a)	Compare Analog mete	er and Digital meter.			4M
	Ans:	Sr.No.	Parameter	Analog meter	Digital meter	1M each
		1	Principle	Meter that gives analog output	Meter that gives digital output	points)
		2	Accuracy	The accuracy is less	The accuracy is More	
		3	Resolution	The resolution is less	The resolution is More	
		4	Power	Requires more power.	Requires less power.	
		5	Cost	Analog are cheap	Digital meter are expensive.	

SUMMER-19 EXAMINATION Model <u>Answer</u> Subject Name: Electronic measurements and instrumentation Subject code:

	6	Observational error	Have observational error	No observational error	
	7	Examples	Potentiometer, DC ammeter, PMMC	DMM , DSO	
(b)	Calculate the frequence Lissajous patterns. Ass	y of channel -1 input fo ume the channel – 2 fr	⊥ or an oscilloscope when equency 15kHz.	n shows the following	4M
Ans:	Channel 1 Frequency Channel 1 frequency	/ Channel 2 frequency = 3 * 15khz = 45 khz	v = 3/1		4M
(c)	Sketch and describe th	e working principle of	LVDT.		4M
Ans:	Diagram				2M
	Core 51 Arm 51 Displacement 50	P S2 Displac	Arm ement Con +S1 V=1 voltag Vd=(V51 - Circuit	A.C voltage re t = 1 t = 1	
	Con	Construction and Circuit C	Connection of LVDT	Connection	
	E datation		www.Instrum	entationToday.com	
	Explaintion: LVDT is the example of the core cause the volt reducing the voltage in voltages appears acros of the physical position Construction of LVDT:	inductive transducer, i age of any secondary w the other secondary w s the output terminal o of the core.	n LVDT any physical dis vinding to increase while inding. The difference of f the transducer and giv	placement of e simultaneously of the two ves a measurement	2M

BOARD OF TECHNICAL EDUCATION

Subject Name: Electronic measurements and instrumentation Subject code:

MAHARASHT rtified)

(Autonomous) (ISO/IEC - 2700

SUMMER-19 EXAMINATION

Model Answer

	 They are wound over a narrow bobbin which is usually of a non- magnetic and insulating material. A core in the shape of road is attached to the transducer sensing a shaft. An AC source is applied across the primary winding and core varies the coupling between it and two secondary windings. .:E0=E1-E2 	
(d)	 (i) Define signal conditioning system. (ii) Draw the circuit diagram of DC signal conditioning circuit. 	4M
Ans:	(i) Signal conditioning is the manipulation of a signal in a way that prepares it	for 2M
Ans:	 (i) Signal conditioning is the manipulation of a signal in a way that prepares it the next stage of processing. Many applications involve environmental or structural measurement, such as temperature and vibration, from sensors. 	for 2M
Ans:	 (i) Signal conditioning is the manipulation of a signal in a way that prepares it the next stage of processing. Many applications involve environmental or structural measurement, such as temperature and vibration, from sensors. (ii) Circuit 	for 2M
Ans:	 (i) Signal conditioning is the manipulation of a signal in a way that prepares it the next stage of processing. Many applications involve environmental or structural measurement, such as temperature and vibration, from sensors. (ii) Circuit 	for 2M

Q.	Sub	Answers	Marking
No.	Q. N.		Scheme
4		Attempt any THREE of the following :	12- Total

SUMMER-19 EXAMINATION

Model Answer

22333

SUMMER-19 EXAMINATION

Model <u>Answer</u>

22333

SUMMER-19 EXAMINATION Model <u>Answer</u> Subject Name: Electronic measurements and instrumentation Subject code:

	3	Range of temperature	-150ºC to 300ºC	-200 oC to 2000 oC	
	4	Size	Small in size	Large as compared to thermistor	
	5	Whether active or passive	Passive	active	
	6	Transduction principle	Resistive transducer	Thermo electric effect	
(e)	Draw and descr	ibe general Data acquisition	system .	<u> </u>	4M
	manipulated by acronyms DAS o	a computer. Data acquisitio or DAQ, typically convert ana	n systems, abbreviated by log waveforms into digita	<pre>/ the l values for processing.</pre>	
	The components parameters to e form that can be conditioned sen controlled by so languages	s of data acquisition systems lectrical signals. Signal cond e converted to digital values sor signals to digital values. ftware programs developed	s include: Sensors, to conv itioning circuitry, to conve Analog-to-digital conver Data acquisition application using various general pur	vert physical ert sensor signals into a ters, to convert ons are usually pose programming	
	The components parameters to e form that can be conditioned sen controlled by so languages Digital Data Acq	s of data acquisition systems lectrical signals. Signal condi- e converted to digital values sor signals to digital values. ftware programs developed uisition System Block Diagra	s include: Sensors, to conv itioning circuitry, to conve Analog-to-digital conver Data acquisition application using various general pur	vert physical ert sensor signals into a ters, to convert ons are usually pose programming	2M
	The components parameters to e form that can be conditioned sen controlled by so languages Digital Data Acq	s of data acquisition systems lectrical signals. Signal condi- e converted to digital values sor signals to digital values. ftware programs developed uisition System Block Diagra Digital Data	include: Sensors, to conv tioning circuitry, to conve Analog-to-digital conver Data acquisition application using various general pur m Acquisition System	vert physical ert sensor signals into a ters, to convert ons are usually pose programming	2М

SUMMER-19 EXAMINATION

Model <u>Answer</u>

22333

Q. No.	Sub Q. N.	Answers	Marking Scheme
5.		Attempt any TWO of the following:	12- Total Marks
	(a)	Describe the need for calibration.	6M
	Ans:	Calibration is defined as the comparison of measured value with standard.	
		Why required?	
		The accuracy of all measuring devices degrade over time. This is typically caused by normal wear and tear. However, changes in accuracy can also be caused by electric or mechanical shock or a hazardous manufacturing environment (e.x., oils, metal chips etc.).	
		Depending on the type of the instrument and the environment in which it is being used, it may degrade very quickly or over a long period of time.	6M
		The bottom line is that, calibration improves the accuracy of the measuring device. Accurate measuring devices improve product quality.	
		A measuring device should be calibrated:	
		According to recommendation of the manufacturer.	
		After any mechanical or electrical shock.	
		Periodically (annually, quarterly, monthly)	
	(b)	Explain the electro-magnetic flow meter with neat sketch and write it's application.	6M
	Ans:	Electromagnetic flow meter:	(Principl
		Principle of Operation:	e -1M
		1. The operation of an Electro-magnetic flow meter is based upon Faraday's Law, which states that the voltage induced across any conductor as it moves at right angles through a	Diagram -2M
			Working

MAHARASHT (Autonomous) (ISO/IEC - 2700 : tified)

SUMMER-19 EXAMINATION Model <u>Answer</u>

SUMMER-19 EXAMINATION

Subject Name: Electronic measurements and instrumentation Subject code:

Model <u>Answer</u>

22333

5. This output e.m.f. is collected by the electrodes and is given to external circuit. 6. The e.m.f. or voltages produced are small especially at low flow rates. 7. The pipe must be non-conductive, non-magnetic. Application:-They can usually measure multidirectional flow, either upstream or downstream. It used for measurement extremely low flow rates. It can be also used for measurement of flow rate of slurries, greasy materials. (c) Describe the circuit diagram of AC signal conditioning. 6M The block diagram of a.c. signal conditioning system:-Ans: Calibration Measurand Low Output Phase ac and Bridge Pass Transducer Sensitive Amplifier Zeroing Filter Detector Network Power Supply Carrier Oscillator Diagram-3M Working AC signal conditioning system -3M Working:-This is carrier type a.c. signal conditioning system. The transducer used is variable resistance or variable inductance transducer. The carrier oscillator generates a carrier signal of the frequency of about 50 Hz to 200 kHz. The carrier frequencies are higher and are at least 5 to 10 times the signal frequencies. The bridge output is amplitude modulated carrier frequency signal. The a.c. amplifier is used to amplify this signal. A separate power supply is required for the a.c. amplifier. The amplified signal is demodulated using phase sensitive demodulator. The advantage of using phase sensitive demodulator is that the polarity of d.c. output indicates the direction of the parameter change in the bridge output. Unless and until spurious and noise signals modulate the carrier, they will not affect the data signal quality and till then are not important. Active filters are used to reject mains frequency pick up. This

SUMMER-19 EXAMINATION Model Answer

22333

prevents the overloading of a.c. amplifier. Filtering out of carrier frequency components of the data signal is done by phase sensitive demodulator. The applications of such system are in use with variable reactance transducers and for the systems where signals are required to be transmitted through long cables, to connect the transducers to the signal conditioning	
system. This type of signal conditioning includes the circuits like sample and hold, multiplexers ,analog to digital converters etc.	

Q. No.	Sub Q. N.	Ans	wers	Marking Scheme
6.		Attempt any TWO of the following :		12- Total Marks
	(a)	(i) Compare CRO and DSO.(ii) State the formula for phase measurement	nt using CRO with necessary diagram.	6M
	Ans:	(i)		
		CRO	DSO	
		Directly reads analog voltage and displays it on screen.	It reads the analog voltage and converts it into digital form before being displayed on the screen.	
		Do not require ADC, microprocessor and acquisition memory	Requires ADC, microprocessor and acquisition memory	
		Can only analyze signal in real time as there is no storage memory available.	Can analyze signal in real time as well as can analyze previously acquired large samples of data with facility of storage available.	(Any Three- 3M)
		Can not analyze high frequency sharp rise time transients	Can analyze high frequency transients due to advanced DSP algorithms available and ported on microprocessor which can	

SUMMER-19 EXAMINATION

Model <u>Answer</u>

22333

operate on stored samples of input voltage.	
(ii)Phase measurement using CRO:	
The phase measurement can be done by using Lissajous figures.	
The CRO is set to operate in the X- Y mode, then the display obtained on the screen of a CRO is called Lissajous pattern, when two sine waves of the same frequency are applied to the CRO. (One vertical and one horizontal deflection plates).	3M
Depending on the phase shift between the two signals, the shape of the Lissajous pattern will go on changing.	
The phase shift is given by,	
$\Theta = \sin - 1 (A/B)$	
A	
A. The Lissajous pattern will be an ellipse if the sine waves of equal frequency but phase shift between 00 and 900 are applied to the two channels of CRO. The Lissajous pattern will be as shown below-	

SUMMER-19 EXAMINATION Model <u>Answer</u> Subject Name: Electronic measurements and instrumentation Subject code:

SUMMER-19 EXAMINATION

Model <u>Answer</u>

Subject Name: Electronic measurements and instrumentation Subject code:

ns:	(i)			
	sensor	examples	application	
	Thermal Sensor	 Glass thermometer Bimetallic thermometer Thermocouples Thermister RTD pyrometers 	 The temperature sensors are used in the military/Defence. It can be used in the home automation systems like air conditioners, refrigerators, microwave Owens It can also use in the industries like warehouses, mushroom cultivation. The temperature sensors are used to measure the temperature of the boilers in thermal power plants 	Any 10 1M Any 1 app-1
	Optical sensor	 Photoelectric tachometer Optical pyrometers Stroboscope Photoelectric pressure transducer. 	 Speed measurement Temperature measurement Pressure measurement. Optical sensors are integral parts of many common devices, including computers, copy machines (xerox) 	

MAHARASHT (Autonomous) (ISO/IEC - 2700

SUMMER-19 EXAMINATION

Model <u>Answer</u>

22333

Subject Name: Electronic measurements and instrumentation Subject code:

Magnetic sensor	 LVDT RVDT Electromagnetic flow meter Inductive pick-up Eddy current tachometer. 	 that turn on automatically in the dark. Linear and angular displacement measurement Flow measurement Speed measurement.
Electric sensors	 tachometer. Piezo-electric transducer Resisitive transducer Thermocouple Strain gauge 	 Pressure measurement Linear and angular displacement measurement Speed measurement Temperature measurement

(ii) selection criteria of transducer:

- **Operating Principle :** The transducers are selected on the basis of operating principle it may be resistive, inductive, capacitive, optical etc.
- **Operating range :** The range of transducer should be appropriate for measurement to get a good resolution.
- **Accuracy :** The accuracy should be as high as possible or as per the measurement.
- **Range :** The transducer can give good result within its specified range, so select transducer as per the operating range.
- Sensitivity : The transducer should be more sensitive to produce the output or sensitivity should be as per requirement.
 (Any four-
- **Loading effect :** The transducer's input impedance should be high and output **3M)** impedance should be low to avoid loading effect.
- Errors : The error produced by the transducer should be low as possible.
- **Environmental compatibility :** The transducer should maintain input and output characteristic for the selected environmental condition.

OR

1.Operating range

(Autonomous) (ISO/IEC - 2700

SUMMER-19 EXAMINATION

Model Answer

22333

		T
	2. Operating principle	
	3. Sensitivity	
	4. Accuracy	
	5. Frequency response and resonant frequency	
	6. Errors	
	7. Environmental compatibility	
	8. Usage and ruggedness.	
	9. Electrical aspect.	
	10. Stability and Reliability	
	11. Loading effect	
	12. Static characteristics	
	13. General selection criteria	
(c)	(i) State the principle of Humidity measurement using hygrometer.	6M
	(ii) State the type of humidity measurement and range with it	
	(ii) State the type of humaity measurement and range with it.	
Ans:	(i) Principle of Hair hygrometer:-	
	Due to humidity, several materials undergo a change in physical, chemical and electrical properties. This property is used in a transducer designed and calibrated to directly read the relative humidity.	
	Certain hygroscopic materials, such as human hair, animal membranes, wood, paper, etc., undergo changes in the linear dimensions when they absorb moisture from the surrounding air. This change in the linear dimension is used as the measurement of the humidity present in the air.	
	Construction of Hair hygrometer	
		Diagram -2M
		Working -1m)

rtified)

(Autonomous) (ISO/IEC - 2700

SUMMER-19 EXAMINATION Model <u>Answer</u> Subject Name: Electronic measurements and instrumentation Subject code:

SUMMER-19 EXAMINATION

Model <u>Answer</u>

22333

Dew point hygrometer.	
2. Wet bulb and dry bulb thermometer.	
Range with it.	
 Hair hygrometer-humidity range 20to 90% over the temperature range 5 degree to 40 degree Celsius. Sling psychrometer –humidity range 0 to 100% RH. 	

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT / CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

tified)

WINTER-19 EXAMINATION

Subject Name: Electronic measurement and instrumentation

Subject Code:

22333

Model Answer

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.	Answers	Marking Scheme
1	(A)	Attempt any FIVE of the following:	10- Total Marks
	(a)	Define the term 'Measurement'.	2M
	Ans:	Measurement is the result or act of a quantitative comparison between a predetermined standard and an unknown magnitude. Or	Correctdef inition 2M
		Measurement is the result of an opinion formed by one or more observers about the relative size or intensity of some physical quantity.	
	(b)	List different types of errors.	2M
	Ans:	 There are three types of error 1) Gross Error: These errors are mainly human mistakes in reading instruments and recording and calculating measurement results. 2) Systematic Error : These types of error are divided into three categories 	½ M - Gross 1 M − Systemati c ½ - Random

Subject Name: Electronic measurement and instrumentation

Subject Code:

22333

Model Answer

		-
	i) Instrumental Errors :Instrumental error is due to inherent shortcomings in the instrument.	
	ii)Environmental Error:Environmental errors are due to conditions external to the measuring device including conditions in the area surrounding the instrument	
	. iii) Observational Error: It is due to wrong method followed by operator to read analog meter used by operator .	
	3) Random Error.: These errors are due to unknown causes which are not determinable	
(c)	Give any two applications of LED and LCD each.	2M
Ans:	Two applications of LED	
	(1) As an indicators and small display.	
	(2) In digital thermometer, pulse rate meter.	A
	(3) In patient monitoring.	Any Z
	(e) passes	applicatio
	Two applications of LCD	ns of each
	(1) In video games	1/2M
	(2) In calculators	
	(3) In test equipments	
	(4) In gauges and counters	
(d)	Define transducer. Give two examples of transducer.	2M
Ans:	It is a device which convert any form of physical energy in to electrical energy.	Definition
	Two examples of transducer	
		Any 2 examples
	(1) Strain gauge	1M
	(2) Inermistor	
	(3) Inermocoupie	

Subject Name: Electronic measurement and instrumentation

Subject Code:

22333

Model Answer

e)	Define : (i) Laminar flow	2M
	(ii) Turbulent flow	
Ans:	 (i) Laminar flow : if the average velocity of the fluid is very low, then fluid particles will flow in parallel lines along the sides of the pipe. This type of flow is called as laminar flow. (ii) Turbulent flow: if velocity of fluid is increased beyond a certain limit, eddy current starts to form. And flow becomes turbulent flow. 	Each definition 1M
f)	State significance of Lissajous figure.	2M
Ans:	Significance of Lissajous figure.	2M
	The characteristics patterns that appear on the screen of a cathode ray tube, when sinusoidal voltages are simultaneously applied to horizontal and vertical plates .these patterns are called Lissaous figure.	
	OR	
	Two phase-shifted sinusoid inputs are applied to the oscilloscope in X-Y mode and the phase relationship between the signals is presented as a Lissajous figure.	
	it is used for measurement of phase and frequency.	
g)	List the applications of DAS.	2M
Ans:	Applications of DAS:	1 applicati
	 (I) In Aerospace (II) In biomedical (III) Telemetry industries (IV) When physical quantity being monitored 	on ½ mark

Q.	Sub	Answers	Marking
No.	Q. N.		Scheme
2		Attempt any THREE of the following:	12- Total

Subject Name: Electronic measurement and instrumentation

Subject Code:

22333

		Marks
a)	Draw and explain working of half wave rectifier type AC voltmeter.	4M
Ans:	$\begin{array}{c} + & & & \\ + & & & \\ & & & \\ & & & \\ AC \text{ input} \\ \text{ signal} \\ & & \\ - & \\ \end{array} \xrightarrow{P_2} \\ & & \\ B_2 \\ \end{array} \xrightarrow{P_1} \\ B_2 \\ \end{array} \xrightarrow{P_1} \\ P_2 \\ \end{array}$	2M for explan ion & 2 M for diagram
	 Fig: Circuit Diagram of rectifier type AC voltmeter Basic rectifier type AC voltmeter is a general rectifier type of voltmeter. In this case for the rectification action two diodes namely D1 and D2 are used. An a c input signal to be measured is applied. 	
	 If a current passing through the diode is small then there is a non- linearity problem. But for higher current the diode shows linearity. So to increase the current passing through diode; a resistance R2 is connected in parallel with the meter. 	
	 Now during positive half cycle of input signal diode D1 is forward biased While the diode D2 is reversed biased. So during this cycle the current passes through diode D1 and 	
	 During the negative half cycle diode D1 is reversed biased and diode D2 is forward biased. So the current flows in opposite direction. In this case the meter is bypassed. 	
	 Because of the diode action an a.c input signal is converted into pulsating dc. Thus the meter shows average value of an input signal. 	

Subject Name: Electronic measurement and instrumentation

Subject Code:

22333

Model Answer

Subject Name: Electronic measurement and instrumentation

Subject Code:

22333

Model Answer

	Working: 2M When current passes through the coil a deflecting torque is produced. This deflecting torque is produced due to interaction between magnetic field produced by permanent magnet and magnetic field produced by moving coil. Due to this torque the coil deflects and this deflection is proportional to the current flowing through the coil. The pointer attached to the coil indicated the magnitude of quantity being measured. The another torque is developed by the hair spring known as controlling torque. This torque helps to stabilize the pointer. The pointer becomes stable at equilibrium; this is possible only when the controlling torque becomes equal to the deflecting torque.	
c)	Draw block diagram of CRO and explain function of each block of it.	4M
Ans:	UMINOUS SIGNAL UMINOUS SPOT UVIC	2M for explanat ion & 2 M for diagram
	 The functions of various blocks are: CRT: This is cathode ray tube which emits electrons that strike phosphor screen internally to provide visual display of signal. VERTICAL AMPLIFIER: This is a wideband amplifier used to amplify signals in the vertical section. DELAY LINE: It is used to delay the signal for some time in vertical section. TRIGGER CIRCUIT: This is used to convert the incoming signals into trigger pulses so that input signal & sweep frequency can be synchronized. TIME BASE: It is used the saw tooth voltage required to deflect the beam in the basis extension. 	

ea)

WINTER-19 EXAMINATION

Subject Name: Electronic measurement and instrumentation

Subject Code:

22333

Model Answer

Γ

WINTER-19 EXAMINATION

Model Answer

Subject Name: Electronic measurement and instrumentation

Subject Code:

Q. No.	Sub Q. N.	Answers	Marking Scheme
3		Attempt any THREE of the following :	12- Total Marks
	a)	What will be the phase shift for following Lissajous patterns?	4M
		(i) (ii) (iii) (iv) Fig. 3(a)	
	Ans:	(i) Phase shift = 0°	each
		(ii) Phase shift = 90° or 270° (iii) Phase shift = 30° or 330°	correct
		(iii) Phase shift = 180°	1M
	b)	Draw and describe the constructional diagram of LVDT.	4M
	Ans:	A.C. voltage	Diagram and
		Core S1 P S2 Displacement Core Output Arm Core Output Soft iron core Output Displacement Output Construction of LDVT Circuit Connection	construc tion 2M each
		Construction and Circuit Connection of LVDT	
		Construction of LVDT:	
		 A differential transducer consists of a primary winding and two secondary winding. The windings are arranged concentrically and next to each other. They are wound 	

Subject Name: Electronic measurement and instrumentation

Subject Code:

22333

9

Model Answer

	 over a narrow bobbin which is usually of a non-magnetic and insulating material. A core in the shape of road is attached to the transducer sensing a shaft. An AC source is applied across the primary winding and core varies the coupling between it and two secondary windings. E0=E1-E2 	
c)	Describe working principle of radiation level measurement with neat diagram.	4M
Ans:	Radiation type level measurement. Is non contact type detector which is used where electrical method would not survive.	For diagram
	Source holder Electric wire To indicating instruments Tank wall Detector	& working 2M Each
	Radiation type Level Indicator	
	1. It consist of gamma ray source holder on one side of the tank and a gamma detector on the other side of the tank.	
	2. The gamma rays from source are directed towards the detector in a thin band of radiation.	
	3. When gamma rays penetrate the thick wall of the tank, its energy level afterwards is greatly reduced.	
	4. The radiation received at the gamma detector is inversely proportional to the thickness of the walls and the medium between the radiation source and detector.	

Subject Name: Electronic measurement and instrumentation

Subject Code:

22333

Model Answer

		5. The amount of radiation received is inversely proportional to the amount of liquid between the radiation source and detector.	
		6. The difference in the amount radiation received by detector, corresponds to the liquid level in the tank.	
		7. Thus, when liquid level rises, the amount of radiation received is reduced and vice versa.	
	d)	Explain the need of signal conditioning.	4M
	Ans:	Need of signal conditioning	4M
		The Measured, which is basically a physical quantity as is detected by the first stage of instrumentation or measurement system. The first stage, "detector transducer Stage", the quantity is detected and is transduced into an electrical form.	
		The output of the first stage has to be modified before it became usable and satisfactory to drive the signal presentation stage of the measurement stage may consist of indicating, recording, displaying, data processing element or control systems.	
		Measurement of dynamic physical quantities requires faithful representation of their analog or digital output obtained from the intermediate stage i.e. signal conditioning stage and this places severe strain on the signal conditioning equipment.	
		The signal conditioning equipment may be require doing linear processes like amplification, attenuation, integration, differentiation, addition and subtraction. They are also required to do nonlinear processes like modulation, demodulation ,sampling ,filtering ,clipping ,clamping etc .These functions are require to faithful reproduction of output signal for the final data presentation stage.	
Q. No.	Sub Q. N.	Answers	Marking Scheme
4		Attempt any THREE of the following :	12- Total Marks
	(a)	Suggest instrument to measure unknown frequency above 5 MHz and store result. Justify it.	4M
	Ans:	For measurement of frequency CRO, DSO SPECTRUM ANALYZER & FREQUENCY COUNTER	1M for

can be used. In above specification we can used CRO & DSO for measurement, but the data suggesti

Subject Name: Electronic measurement and instrumentation

WINTER-19 EXAMINATION

Subject Code:

22333

Model Answer

	has to be stored so we cannot have used CRO for such application's DSO with 20 MHz band width or higher bandwidth can be used. Because DSO has measurement facility as well as storage facility.	ng instrum ent
	(ANY OTHER RELEVANT JUSTIFICATION MARKS CAN BE GIVEN)	& 3 M explanat ion
(b)	Convert the PMMC movement into a dc – ammeter of the range 0 to 100 mA.	4M
Ans:	Assume: Rm=1KΩ, Im = 50μA, I=100mA.	(1M)
	$m=I/Im = (100*10^{-3})/(50*10^{-6}) = 2000$	
	Rsh = 1/(m - 1) *Rm	
	=1/ (2000 -1) *1000	
	Rsh = 0.5Ω	
	Ish =I –Im	(2MARK
	$=(100*10^{-3})-(50*10^{-6})$	S FOR
	Ish = 0.09A =99.9mA	CALCUL ATION)
	V V F_{sh} R_{m} F_{m}	1M diagram
(c)	Draw and explain the block diagram of DAS.	4M
Ans:	Data acquisition is the process of sampling signals that measure real world physical conditions and converting the resulting samples into digital numeric values that can be manipulated by a computer. Data acquisition systems, abbreviated by the acronyms <i>DAS</i> or <i>DAQ</i> , typically convert analog waveforms into digital values for processing. The components	2M for explanat ion

Subject Name: Electronic measurement and instrumentation

WINTER-19 EXAMINATION

Subject Code:

22333

Model Answer

Function generator operates to produce different waveforms such as sine, square, triangular of adjustable frequency which is used to test functionality of various electronic circuits.

Subject Name: Electronic measurement and instrumentation

Subject Code:

22333

Model Answer

Subject Name: Electronic measurement and instrumentation

Subject Code:

22333

Model Answer

	Ans:	Diagram:	3M
	a)	Sketch DC signal conditioning circuit for pressure measurement using strain gauge. Justify it.	6M
5.		Attempt any TWO of the following:	12- Total Marks
Q. No.	Sub Q. N.	Answers	Marking Scheme
		 resistor, R2 in such a way that the entire meter current flows through the resistor, R1only. In this case, the meter shows full scale deflection current. Hence, this full scale deflection current of the meter can be represented as 0Ω. If Rx=∞Ω Rx=∞Ω, then the terminals A & B will be open circuited with each other. So, no current flows through resistor, R1. In this case, the meter shows null deflection current. Hence, this null deflection of the meter can be represented as ∞Ω. In this way, by considering different values of Rx, the meter shows different deflections. So, accordingly we can represent those deflections with the corresponding resistance value. The series ohmmeter consists of a calibration scale. It has the indications of 0 Ω and ∞Ω at the end points of right hand and left hand of the scale respectively. Series ohmmeter is useful for measuring high values of resistances. 	
		If $Rx=0\Omega Rx=0\Omega$, then the terminals A & B will be short circuited with each other. So, the	

Subject Name: Electronic measurement and instrumentation

Subject Code:

22333

Subject Name: Electronic measurement and instrumentation

Subject Code:

22333

Model Answer

Subject Name: Electronic measurement and instrumentation

Subject Code: 22333

Model Answer

	 Disadvantages: (Any One) It is not suitable for low velocity. It is more expensive. It is suitable for fluids having conductivity greater than 20 micro ohm/cm. Gas inclusion cause errors. 	1M
	 Application: (Any One) It is used for measurement of flow of portable water, raw water, chilled water. Used for flow measurement of Corrosive liquids, slurries and pastes. 	
c)	Explain Piezo-electric transducer with diagram. State its applications, advantages and disadvantages.	6M
Ans:	Explanation: Principle of operation: When a pressure or force or vibration applied to the crystalline material like quartz crystal or crystalline substances then an e.m.f. is generated across the material or vice versa. Diagram: Pressure Port Force Summing Nember Voltage Base Piezo-Electric Transducer Advantages: any one • These are active transducer i.e. they don't require external power for working and are	1.5M

Subject Name: Electronic measurement and instrumentation

Subject Code:

22333

Model Answer

	1M
4) Plezoelectric materials are use in ultrasonic transducers.	
3) It is used in ultrasonic flow meters, non-destructive test (NDT) equipment's	
vibration picks ups.	
2) These are used in measurement of surface roughness in accelerometers and	
Application: any one 1) It is used in under water detection system i.e. SONAR.	1M
 They can only measure changing pressure hence they are useless while measuring static parameters 	
I emperature and environmental conditions can affect the behavior of the transducer. They are only measure abancing pressure bance they are yealess while measuring static	
Disadvantages: any one	
	1M
applications.	
• The high-frequency response of these transducers makes a good choice for various	

Q. No.	Sub Q. N.	Answers	Marking Scheme
6.		Attempt any TWO of the following :	12- Total Marks
	a)	Define accuracy and precision. Voltmeters (V1, V2, V3 and V4) are used to measure a voltage of 150 volts (true value). The voltage is measured four times by each voltmeter as mentioned in below table:	6M

Subject Name: Electronic measurement and instrumentation

Subject Code:

22333

Model Answer

			Readings Shown				1	
		$V_I \rightarrow$	145	145	145	145	1	
	V	$V_2 \rightarrow$	149.1	150.1	149.5	149.6		
		$_{3}\rightarrow$	145	152	148	155	1	
	V	>	150	150	150	150	1	
Ans:	Definition: Accuracy the closeness of the r	is the abi measured	lity of the in value to a st	strument to andard or t	o measure rue value.	the accur	ate value.	OR it is 11
Ans:	Definition: Accuracy the closeness of the r Precision: The precis each other. The value	is the abi measured s ion mear e of precis	lity of the in value to a st ns two or m sion differs b	strument to candard or t nore values ecause of th	o measure rue value. of the mane observa	the accur easureme	ate value. nts are clo	OR it is 1 psed to 1
Ans:	Definition: Accuracy the closeness of the r Precision: The precis each other. The value Voltmeter V1 –show	is the abi measured sion mear e of precis s error in	lity of the in value to a st ns two or m sion differs b measuremer	strument to candard or t nore values ecause of th nt which is c	o measure rue value. of the me ne observationstant th	the accur easureme tional erro roughout	ate value . nts are clo or all measure	OR it is 1 psed to 1 ement. 1
Ans:	Definition: Accuracy the closeness of the r Precision: The precis each other. The value Voltmeter V1 –show Voltme	is the abi measured sion mear e of precis 's error in ter V1 is r	lity of the in value to a st ns two or m sion differs b measuremen neither accur	strument to candard or t nore values ecause of th nt which is c rate nor pre	o measure rue value. of the me ne observat constant th cise.	the accur easureme tional erro roughout	ate value . nts are clo or all measure	OR it is 1 Desced to 1 1 1 1 1 1 1 1 1 1 1 1 1
Ans:	Definition: Accuracy the closeness of the r Precision: The precis each other. The value Voltmeter V1 – show Voltme Voltmeter V2 – show	is the abi measured sion mear e of precis s error in eter V1 is r s error in	lity of the in value to a st ns two or m sion differs b measuremen neither accur measuremen	strument to candard or t nore values ecause of th nt which is c rate nor pre nt which is r	o measure rue value. of the me ne observat constant th cise. not constar	the accur easureme tional erro roughout nt through	ate value . nts are clo or all measure	OR it is 1 psed to 1 ement. 1
Ans:	Definition: Accuracy the closeness of the r Precision: The precis each other. The value Voltmeter V1 – show Voltmeter V2 – show Measu	is the abi measured sion mear e of precis 's error in eter V1 is r 's error in urement. E	lity of the in value to a st ns two or m sion differs b measuremen neither accur measuremen But nearer to	strument to candard or t nore values ecause of th nt which is c rate nor pre nt which is r actual volta	o measure rue value. of the ma ne observat constant th cise. not constar age. So V2	the accur easureme tional erro roughout at through is not acc	ate value. nts are clo or all measure out all urate but it	OR it is 11 psed to 11 ement. 11 : is 11
Ans:	Definition: Accuracy the closeness of the r Precision: The precis each other. The value Voltmeter V1 –show Voltme Voltmeter V2 – show Measu Precise	is the abi measured sion mear e of precis 's error in eter V1 is r 's error in urement. E e.	lity of the in value to a st ns two or m sion differs b measuremen neither accur measuremen But nearer to	strument to candard or t nore values ecause of th nt which is c rate nor pre nt which is r actual volta	o measure rue value. of the me ne observat constant th cise. not constar age. So V2	the accur easureme tional erro roughout nt through is not acc	ate value. nts are clo or all measure out all urate but it	OR it is 10 osed to 10 ement. 10 : is 10
Ans:	Definition: Accuracy the closeness of the r Precision: The precise each other. The value Voltmeter V1 – show Voltmeter V2 – show Measu Precise Voltmeter V3 – show	is the abi measured sion mear e of precis 's error in eter V1 is r 's error in urement. E e. 's error in	lity of the in value to a st ns two or m sion differs b measuremen neither accur measuremen But nearer to measuremen	strument to candard or t nore values ecause of th nt which is c rate nor pre nt which is r actual volta	o measure rue value. of the ma ne observat constant th cise. not constar age. So V2	the accur easureme tional erro roughout nt through is not acc	ate value. nts are clo or all measure out all urate but it	OR it is 10 osed to 10 ement. 10 is 10
Ans:	Definition: Accuracy the closeness of the r Precision: The precise each other. The value Voltmeter V1 – show Voltmeter V2 – show Measu Precise Voltmeter V3 – show	is the abi measured sion mear e of precis rs error in eter V1 is r rs error in urement. E e. rs error in urement. E	lity of the in value to a st ns two or m sion differs b measuremen neither accur measuremen But nearer to measuremen But nearer to	strument to candard or t nore values ecause of th nt which is c rate nor pre nt which is r actual volta nt which is r	o measure rue value. of the ma ne observat constant th cise. not constar age. So V2 not constar	the accur easureme tional erro roughout it through is not acc at through is neither	ate value. nts are cloor all measure out all urate but it out all raccurate n	OR it is 11 osed to 11 ement. 11 is 11 or 11
Ans:	Definition: Accuracy the closeness of the r Precision: The precise each other. The value Voltmeter V1 – show Voltmeter V2 – show Measu Precise Voltmeter V3 – show Measu	is the abi measured sion mear e of precis 's error in eter V1 is r 's error in urement. E e. 's error in urement. E	lity of the in value to a st ns two or m sion differs b measuremen neither accur measuremen But nearer to measuremen But nearer to	strument to candard or t nore values ecause of th nt which is c rate nor pre nt which is r actual volta nt which is r	o measure rue value. of the me ne observat constant th cise. not constar age. So V2 not constar age. So V3	the accur easureme tional erro roughout it through is not acc at through is neither	ate value. nts are cloor all measure out all urate but if out all out all	OR it is 10 psed to 10 ement. 10 c is 10 or 10

Subject Name: Electronic measurement and instrumentation

Subject Code:

22333

Model Answer

	measurement.				
b)	For the waveform shown in Fig 6(b) if vertical attenuation is $3mV/div$.				
	Find, (i) Peak to peak voltage (ii) Amplitude (iii) rms value of the signal.				
Ans:	(i) Peak to peak voltage=(no. of vertical division from +ve peak to –ve peak)*(volts/div)				
	= 6*3 mV/div =18 mV/div.				
	(ii) Amplitude: 3*3 mV/div =9 mV/div.				
	(iii) rms value of the signal.= $\frac{V_m}{\sqrt{2}} = \frac{9}{\sqrt{2}} = 6.36V$				
c)	Sketch and describe pressure measurement system for 800 mm pressure, that contain Bourdon tube and LVDT.				
Ans:	Diagram:	3M			

Subject Name: Electronic measurement and instrumentation

Subject Code:

22333

Model Answer

